Laplace Asymptotic Expansions for Gaussian Functional Integrals

نویسنده

  • Ian M Davies
چکیده

We obtain a Laplace asymptotic expansion, in orders of λ, of Eρx { G(λx)e −2F (λx)} } the expectation being with respect to a Gaussian process. We extend a result of Pincus [9] and build upon the previous work of Davies and Truman [1, 2, 3, 4]. Our methods differ from those of Ellis and Rosen [6, 7, 8] in that we use the supremum norm to simplify the application of the result. A.M.S. Classification: Primary 60G15, Secondary 41A60 Submitted to EJP on January 24, 1998. Final version accepted on September 21, 1998.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic expansions of oscillatory integrals with complex phase

We consider saddle point integrals in d variables whose phase functions are neither real nor purely imaginary. Results analogous to those for Laplace (real phase) and Fourier (imaginary phase) integrals hold whenever the phase function is analytic and nondegenerate. These results generalize what is well known for integrals of Laplace and Fourier type. The proofs are via contour shifting in comp...

متن کامل

Asymptotics of integrals

• Heuristic for Stirling’s asymptotic •Watson’s lemma •Watson’s lemma illustrated on B(s, a) • Simple form of Laplace’s method • Laplace’s method illustrated on Bessel functions Here some standard methods in asymptotic expansions [1] of integrals are illustrated: Watson’s lemma and Laplace’s method. Watson’s lemma dates from at latest [Watson 1918a], and Laplace’s method at latest from [Laplace...

متن کامل

Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator.

The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure ...

متن کامل

Estimation and Prediction for Spatial Generalized Linear Mixed Models Using High Order Laplace Approximation

Estimation and prediction in generalized linear mixed models are often hampered by intractable high dimensional integrals. This paper provides a framework to solve this intractability, using asymptotic expansions when the number of random effects is large. To that end, we first derive a modified Laplace approximation when the number of random effects is increasing at a lower rate than the sampl...

متن کامل

A Distribution Family Bridging the Gaussian and the Laplace Laws, Gram-Charlier Expansions, Kurtosis Behaviour, and Entropy Features

The paper devises a family of leptokurtic bell-shaped distributions which is based on the hyperbolic secant raised to a positive power, and bridges the Laplace and Gaussian laws on asymptotic arguments. Moment and cumulant generating functions are then derived and represented in terms of polygamma functions. The behaviour of shape parameters, namely kurtosis and entropy, is investigated. In add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998